banner
andrewji8

Being towards death

Heed not to the tree-rustling and leaf-lashing rain, Why not stroll along, whistle and sing under its rein. Lighter and better suited than horses are straw sandals and a bamboo staff, Who's afraid? A palm-leaf plaited cape provides enough to misty weather in life sustain. A thorny spring breeze sobers up the spirit, I feel a slight chill, The setting sun over the mountain offers greetings still. Looking back over the bleak passage survived, The return in time Shall not be affected by windswept rain or shine.
telegram
twitter
github

deepseek-r1 一鍵自動化滲透

Autopentest 自動化滲透測試框架設計方案#

image

image

核心架構設計#

採用模組化插件架構,主程序通過工作流引擎協調各模組執行順序:

# autopentest.py
class WorkflowEngine:
    def __init__(self, config):
        self.modules = {
            'pre_engagement': PreEngagement(config),
            'info_gathering': InfoGather(config),
            'threat_modeling': ThreatModeler(config),
            # ...其他模組
        }
        self.workflow = [
            ('pre_engagement', 'validate_scope'),
            ('info_gathering', 'full_scan'),
            ('threat_modeling', 'analyze_attack_surface'),
            # ...其他步驟
        ]

    def execute(self):
        context = {}
        for module_name, method_name in self.workflow:
            module = self.modules[module_name]
            method = getattr(module, method_name)
            context = method(context)
            if context.get('abort'):
                break
        return context

核心模組實現示例
2.1 智能信息收集模組(info_gathering.py)

class InfoGather:
    def __init__(self, config):
        self.tools = {
            'subdomain': SubdomainEnumerator(config),
            'port': PortScanner(config),
            'crawler': AdvancedCrawler(config)
        }
        self.ai_assist = AIScanner(config)

    def full_scan(self, context):
        target = context['target']
        
        # 多線程執行掃描任務
        with ThreadPoolExecutor() as executor:
            futures = {
                executor.submit(self.tools['subdomain'].enumerate, target),
                executor.submit(self.tools['port'].scan, target),
                executor.submit(self.tools['crawler'].crawl, target)
            }
            
            results = {}
            for future in as_completed(futures):
                data = future.result()
                results.update(data)
        
        # AI輔助分析異常特徵
        ai_findings = self.ai_assist.analyze(results)
        results.update(ai_findings)
        
        context['scan_results'] = results
        return context

2.2 AI 增強型漏洞分析(ai_analyzer.py)

class AIAnalyzer:
    def __init__(self):
        self.model = load_model('vuln_predict.h5')
        self.threat_intel = ThreatIntelAPI()

    def analyze_vulns(self, scan_data):
        # 特徵預處理
        features = self._extract_features(scan_data)
        
        # 預測漏洞可能性
        predictions = self.model.predict(features)
        
        # 關聯威脅情報
        enriched_data = []
        for vuln in predictions:
            intel_data = self.threat_intel.query(vuln['cve_id'])
            vuln.update({
                'exploitability': intel_data.get('exploit_score'),
                'patch_status': intel_data.get('patch_info'),
                'recommendation': self._generate_mitigation(vuln)
            })
            enriched_data.append(vuln)
            
        return sorted(enriched_data, key=lambda x: x['risk_score'], reverse=True)

技術亮點設計
3.1 智能攻擊鏈生成(threat_modeling.py)

class AttackChainGenerator:
    def generate_attack_paths(self, context):
        attack_graph = nx.DiGraph()
        
        # 構建攻擊路徑圖
        for vuln in context['vulnerabilities']:
            attack_graph.add_node(vuln['id'], 
                type=vuln['type'], 
                access_level=vuln['access_level'])
            
        # 自動連接相關攻擊節點
        for vuln1, vuln2 in combinations(attack_graph.nodes, 2):
            if self._is_connectable(vuln1, vuln2):
                attack_graph.add_edge(vuln1, vuln2)
        
        # 尋找最優攻擊路徑
        return nx.dag_longest_path(attack_graph)

3.2 自適應漏洞利用(exploit_manager.py)

class ExploitExecutor:
    def smart_execute(self, vuln_info):
        # 動態選擇Payload
        payload = self._select_payload(
            vuln_info['target_env'],
            vuln_info['protection_mechanisms']
        )
        
        # 上下文感知的漏洞利用
        if vuln_info['service'] == 'web':
            return self._web_exploit(vuln_info, payload)
        elif vuln_info['protocol'] == 'smb':
            return self._smb_exploit(vuln_info, payload)
        else:
            return self._generic_exploit(vuln_info, payload)

安全增強設計
4.1 安全沙箱執行(post_exploit.py)

class SandboxExecutor:
    def safe_execute(self, payload):
        # 使用Docker創建隔離環境
        with DockerSandbox() as sandbox:
            result = sandbox.run(
                image="isolated_env:latest",
                command=payload,
                timeout=30
            )
            
            # 行為監控和分析
            behavior_report = self.monitor.behavior_analysis(
                result.system_calls,
                result.network_activity
            )
            
            return {
                'output': result.stdout,
                'threat_level': behavior_report['risk_score']
            }

報告生成優化(report_generator.py)

class SmartReporter:
    def generate_dynamic_report(self, data):
        # 自動生成執行摘要
        summary = self.ai_summarizer.generate_executive_summary(data)
        
        # 漏洞數據可視化
        charts = {
            'risk_distribution': self._create_pie_chart(data),
            'timeline': self._create_attack_timeline(data)
        }
        
        # 生成多格式報告
        report = {
            'html': self._render_html_template(summary, charts),
            'pdf': self._convert_to_pdf(html_report),
            'markdown': self._generate_technical_md(data)
        }
        
        return report

創新點總結
該框架通過以下創新點提升自動化滲透測試效率:

智能工作流引擎:支持動態調整測試流程,基於上下文自動選擇最優路徑
AI 增強分析:結合機器學習模型和威脅情報進行漏洞優先級排序
自適應利用系統:根據目標環境動態生成有效 Payload
攻擊面可視化:自動構建攻擊路徑圖,識別關鍵突破點
安全執行環境:所有危險操作在沙箱中運行,防止意外影響
建議技術棧
核心語言:Python 3.10+
異步框架:Celery + RabbitMQ
數據處理:Pandas + NumPy
AI 組件:PyTorch + HuggingFace Transformers
可視化:Matplotlib + Plotly
沙箱技術:Docker + seccomp
安全控制措施
該框架需要實現嚴格的安全控制措施:

所有外部輸入驗證和消毒
敏感操作二次確認機制
完整的審計日誌記錄
加密存儲所有掃描數據
嚴格的權限分離機制
後續演進方向
集成 MITRE ATT&CK 框架
添加雲環境檢測模組
開發自動化繞過 WAF 能力
實現智能蜜罐識別功能
構建漏洞知識圖譜系統
這個設計在自動化程度和安全控制之間取得了平衡,既提高了滲透測試效率,又確保了操作過程的安全可控。

載入中......
此文章數據所有權由區塊鏈加密技術和智能合約保障僅歸創作者所有。