banner
andrewji8

Being towards death

Heed not to the tree-rustling and leaf-lashing rain, Why not stroll along, whistle and sing under its rein. Lighter and better suited than horses are straw sandals and a bamboo staff, Who's afraid? A palm-leaf plaited cape provides enough to misty weather in life sustain. A thorny spring breeze sobers up the spirit, I feel a slight chill, The setting sun over the mountain offers greetings still. Looking back over the bleak passage survived, The return in time Shall not be affected by windswept rain or shine.
telegram
twitter
github

deepseek-r1 一键自动化渗透

Autopentest 自动化渗透测试框架设计方案#

image

image

核心架构设计#

采用模块化插件架构,主程序通过工作流引擎协调各模块执行顺序:

# autopentest.py
class WorkflowEngine:
    def __init__(self, config):
        self.modules = {
            'pre_engagement': PreEngagement(config),
            'info_gathering': InfoGather(config),
            'threat_modeling': ThreatModeler(config),
            # ...其他模块
        }
        self.workflow = [
            ('pre_engagement', 'validate_scope'),
            ('info_gathering', 'full_scan'),
            ('threat_modeling', 'analyze_attack_surface'),
            # ...其他步骤
        ]

    def execute(self):
        context = {}
        for module_name, method_name in self.workflow:
            module = self.modules[module_name]
            method = getattr(module, method_name)
            context = method(context)
            if context.get('abort'):
                break
        return context

核心模块实现示例
2.1 智能信息收集模块(info_gathering.py)

class InfoGather:
    def __init__(self, config):
        self.tools = {
            'subdomain': SubdomainEnumerator(config),
            'port': PortScanner(config),
            'crawler': AdvancedCrawler(config)
        }
        self.ai_assist = AIScanner(config)

    def full_scan(self, context):
        target = context['target']
        
        # 多线程执行扫描任务
        with ThreadPoolExecutor() as executor:
            futures = {
                executor.submit(self.tools['subdomain'].enumerate, target),
                executor.submit(self.tools['port'].scan, target),
                executor.submit(self.tools['crawler'].crawl, target)
            }
            
            results = {}
            for future in as_completed(futures):
                data = future.result()
                results.update(data)
        
        # AI辅助分析异常特征
        ai_findings = self.ai_assist.analyze(results)
        results.update(ai_findings)
        
        context['scan_results'] = results
        return context

2.2 AI 增强型漏洞分析(ai_analyzer.py)

class AIAnalyzer:
    def __init__(self):
        self.model = load_model('vuln_predict.h5')
        self.threat_intel = ThreatIntelAPI()

    def analyze_vulns(self, scan_data):
        # 特征预处理
        features = self._extract_features(scan_data)
        
        # 预测漏洞可能性
        predictions = self.model.predict(features)
        
        # 关联威胁情报
        enriched_data = []
        for vuln in predictions:
            intel_data = self.threat_intel.query(vuln['cve_id'])
            vuln.update({
                'exploitability': intel_data.get('exploit_score'),
                'patch_status': intel_data.get('patch_info'),
                'recommendation': self._generate_mitigation(vuln)
            })
            enriched_data.append(vuln)
            
        return sorted(enriched_data, key=lambda x: x['risk_score'], reverse=True)

技术亮点设计
3.1 智能攻击链生成(threat_modeling.py)

class AttackChainGenerator:
    def generate_attack_paths(self, context):
        attack_graph = nx.DiGraph()
        
        # 构建攻击路径图
        for vuln in context['vulnerabilities']:
            attack_graph.add_node(vuln['id'], 
                type=vuln['type'], 
                access_level=vuln['access_level'])
            
        # 自动连接相关攻击节点
        for vuln1, vuln2 in combinations(attack_graph.nodes, 2):
            if self._is_connectable(vuln1, vuln2):
                attack_graph.add_edge(vuln1, vuln2)
        
        # 寻找最优攻击路径
        return nx.dag_longest_path(attack_graph)

3.2 自适应漏洞利用(exploit_manager.py)

class ExploitExecutor:
    def smart_execute(self, vuln_info):
        # 动态选择Payload
        payload = self._select_payload(
            vuln_info['target_env'],
            vuln_info['protection_mechanisms']
        )
        
        # 上下文感知的漏洞利用
        if vuln_info['service'] == 'web':
            return self._web_exploit(vuln_info, payload)
        elif vuln_info['protocol'] == 'smb':
            return self._smb_exploit(vuln_info, payload)
        else:
            return self._generic_exploit(vuln_info, payload)

安全增强设计
4.1 安全沙箱执行(post_exploit.py)

class SandboxExecutor:
    def safe_execute(self, payload):
        # 使用Docker创建隔离环境
        with DockerSandbox() as sandbox:
            result = sandbox.run(
                image="isolated_env:latest",
                command=payload,
                timeout=30
            )
            
            # 行为监控和分析
            behavior_report = self.monitor.behavior_analysis(
                result.system_calls,
                result.network_activity
            )
            
            return {
                'output': result.stdout,
                'threat_level': behavior_report['risk_score']
            }

报告生成优化(report_generator.py)

class SmartReporter:
    def generate_dynamic_report(self, data):
        # 自动生成执行摘要
        summary = self.ai_summarizer.generate_executive_summary(data)
        
        # 漏洞数据可视化
        charts = {
            'risk_distribution': self._create_pie_chart(data),
            'timeline': self._create_attack_timeline(data)
        }
        
        # 生成多格式报告
        report = {
            'html': self._render_html_template(summary, charts),
            'pdf': self._convert_to_pdf(html_report),
            'markdown': self._generate_technical_md(data)
        }
        
        return report

创新点总结
该框架通过以下创新点提升自动化渗透测试效率:

智能工作流引擎:支持动态调整测试流程,基于上下文自动选择最优路径
AI 增强分析:结合机器学习模型和威胁情报进行漏洞优先级排序
自适应利用系统:根据目标环境动态生成有效 Payload
攻击面可视化:自动构建攻击路径图,识别关键突破点
安全执行环境:所有危险操作在沙箱中运行,防止意外影响
建议技术栈
核心语言:Python 3.10+
异步框架:Celery + RabbitMQ
数据处理:Pandas + NumPy
AI 组件:PyTorch + HuggingFace Transformers
可视化:Matplotlib + Plotly
沙箱技术:Docker + seccomp
安全控制措施
该框架需要实现严格的安全控制措施:

所有外部输入验证和消毒
敏感操作二次确认机制
完整的审计日志记录
加密存储所有扫描数据
严格的权限分离机制
后续演进方向
集成 MITRE ATT&CK 框架
添加云环境检测模块
开发自动化绕过 WAF 能力
实现智能蜜罐识别功能
构建漏洞知识图谱系统
这个设计在自动化程度和安全控制之间取得了平衡,既提高了渗透测试效率,又确保了操作过程的安全可控。

加载中...
此文章数据所有权由区块链加密技术和智能合约保障仅归创作者所有。