Autopentest Automated Penetration Testing Framework Design Proposal#
Core Architecture Design#
Using a modular plugin architecture, the main program coordinates the execution order of each module through a workflow engine:
# autopentest.py
class WorkflowEngine:
def __init__(self, config):
self.modules = {
'pre_engagement': PreEngagement(config),
'info_gathering': InfoGather(config),
'threat_modeling': ThreatModeler(config),
# ...other modules
}
self.workflow = [
('pre_engagement', 'validate_scope'),
('info_gathering', 'full_scan'),
('threat_modeling', 'analyze_attack_surface'),
# ...other steps
]
def execute(self):
context = {}
for module_name, method_name in self.workflow:
module = self.modules[module_name]
method = getattr(module, method_name)
context = method(context)
if context.get('abort'):
break
return context
Core module implementation example
2.1 Intelligent Information Gathering Module (info_gathering.py)
class InfoGather:
def __init__(self, config):
self.tools = {
'subdomain': SubdomainEnumerator(config),
'port': PortScanner(config),
'crawler': AdvancedCrawler(config)
}
self.ai_assist = AIScanner(config)
def full_scan(self, context):
target = context['target']
# Execute scanning tasks in multiple threads
with ThreadPoolExecutor() as executor:
futures = {
executor.submit(self.tools['subdomain'].enumerate, target),
executor.submit(self.tools['port'].scan, target),
executor.submit(self.tools['crawler'].crawl, target)
}
results = {}
for future in as_completed(futures):
data = future.result()
results.update(data)
# AI-assisted analysis of abnormal features
ai_findings = self.ai_assist.analyze(results)
results.update(ai_findings)
context['scan_results'] = results
return context
2.2 AI-Enhanced Vulnerability Analysis (ai_analyzer.py)
class AIAnalyzer:
def __init__(self):
self.model = load_model('vuln_predict.h5')
self.threat_intel = ThreatIntelAPI()
def analyze_vulns(self, scan_data):
# Feature preprocessing
features = self._extract_features(scan_data)
# Predict vulnerability likelihood
predictions = self.model.predict(features)
# Associate threat intelligence
enriched_data = []
for vuln in predictions:
intel_data = self.threat_intel.query(vuln['cve_id'])
vuln.update({
'exploitability': intel_data.get('exploit_score'),
'patch_status': intel_data.get('patch_info'),
'recommendation': self._generate_mitigation(vuln)
})
enriched_data.append(vuln)
return sorted(enriched_data, key=lambda x: x['risk_score'], reverse=True)
Technical Highlights Design
3.1 Intelligent Attack Chain Generation (threat_modeling.py)
class AttackChainGenerator:
def generate_attack_paths(self, context):
attack_graph = nx.DiGraph()
# Build attack path graph
for vuln in context['vulnerabilities']:
attack_graph.add_node(vuln['id'],
type=vuln['type'],
access_level=vuln['access_level'])
# Automatically connect related attack nodes
for vuln1, vuln2 in combinations(attack_graph.nodes, 2):
if self._is_connectable(vuln1, vuln2):
attack_graph.add_edge(vuln1, vuln2)
# Find the optimal attack path
return nx.dag_longest_path(attack_graph)
3.2 Adaptive Exploit Execution (exploit_manager.py)
class ExploitExecutor:
def smart_execute(self, vuln_info):
# Dynamically select Payload
payload = self._select_payload(
vuln_info['target_env'],
vuln_info['protection_mechanisms']
)
# Context-aware vulnerability exploitation
if vuln_info['service'] == 'web':
return self._web_exploit(vuln_info, payload)
elif vuln_info['protocol'] == 'smb':
return self._smb_exploit(vuln_info, payload)
else:
return self._generic_exploit(vuln_info, payload)
Security Enhancement Design
4.1 Secure Sandbox Execution (post_exploit.py)
class SandboxExecutor:
def safe_execute(self, payload):
# Create an isolated environment using Docker
with DockerSandbox() as sandbox:
result = sandbox.run(
image="isolated_env:latest",
command=payload,
timeout=30
)
# Behavior monitoring and analysis
behavior_report = self.monitor.behavior_analysis(
result.system_calls,
result.network_activity
)
return {
'output': result.stdout,
'threat_level': behavior_report['risk_score']
}
Report Generation Optimization (report_generator.py)
class SmartReporter:
def generate_dynamic_report(self, data):
# Automatically generate execution summary
summary = self.ai_summarizer.generate_executive_summary(data)
# Vulnerability data visualization
charts = {
'risk_distribution': self._create_pie_chart(data),
'timeline': self._create_attack_timeline(data)
}
# Generate multi-format report
report = {
'html': self._render_html_template(summary, charts),
'pdf': self._convert_to_pdf(html_report),
'markdown': self._generate_technical_md(data)
}
return report
Summary of Innovations
This framework enhances the efficiency of automated penetration testing through the following innovations:
Intelligent workflow engine: Supports dynamic adjustment of testing processes, automatically selecting the optimal path based on context.
AI-enhanced analysis: Combines machine learning models and threat intelligence for vulnerability prioritization.
Adaptive exploitation system: Dynamically generates effective Payloads based on the target environment.
Attack surface visualization: Automatically constructs attack path graphs to identify key breach points.
Secure execution environment: All dangerous operations run in a sandbox to prevent unintended impacts.
Recommended Technology Stack
Core Language: Python 3.10+
Asynchronous Framework: Celery + RabbitMQ
Data Processing: Pandas + NumPy
AI Components: PyTorch + HuggingFace Transformers
Visualization: Matplotlib + Plotly
Sandbox Technology: Docker + seccomp
Security Control Measures
This framework requires strict security control measures:
Validation and sanitization of all external inputs.
Secondary confirmation mechanism for sensitive operations.
Complete audit logging.
Encryption of all scan data.
Strict permission separation mechanisms.
Future Evolution Directions
Integrate MITRE ATT&CK framework.
Add cloud environment detection modules.
Develop automated WAF bypass capabilities.
Implement intelligent honeypot recognition features.
Build a vulnerability knowledge graph system.
This design strikes a balance between automation and security control, improving penetration testing efficiency while ensuring the safety and controllability of the operational process.