尝试着获取股票的数据来研究一下,经过查找与对比,决定用 akshare 这个库,因为该库一直有更新,并且文档是中文,而且比较详细,
akshare 文档地址:https://www.akshare.xyz/
股票各种数据获取方法
导入 akshare 库
1import akshare as ak
2import pandas as pd
1、股票的基本信息数据#
1ak.stock_individual_info_em(symbol="000651")
2、实时数据,当日的成交数据#
单次返回所有沪深京 A 股上市公司的实时行情数据
3、历史数据,历史的成交数据#
ak.stock_zh_a_hist(symbol="000651",
period="daily",
start_date="20230701",
end_date='20230725',
adjust=""
) #不复权
4、资金流向数据#
限量:单次获取指定市场和股票的近 100 个交易日的资金流数据
1ak.stock_individual_fund_flow(stock="000651", market="sz")
5、行情报价,买卖各 5 档#
ak.stock_bid_ask_em(symbol="000651")
范例#
from datetime import datetime
import backtrader as bt # 升级到最新版
import matplotlib.pyplot as plt # 由于 Backtrader 的问题,此处要求 pip install matplotlib==3.2.2
import akshare as ak # 升级到最新版
import pandas as pd
plt.rcParams["font.sans-serif"] = ["SimHei"]
plt.rcParams["axes.unicode_minus"] = False
# 利用 AKShare 获取股票的后复权数据,这里只获取前 6 列
stock_hfq_df = ak.stock_zh_a_hist(symbol="000001", adjust="hfq").iloc[:, :6]
# 处理字段命名,以符合 Backtrader 的要求
stock_hfq_df.columns = [
'date',
'open',
'close',
'high',
'low',
'volume',
]
# 把 date 作为日期索引,以符合 Backtrader 的要求
stock_hfq_df.index = pd.to_datetime(stock_hfq_df['date'])
class MyStrategy(bt.Strategy):
"""
主策略程序
"""
params = (("maperiod", 20),) # 全局设定交易策略的参数
def __init__(self):
"""
初始化函数
"""
self.data_close = self.datas[0].close # 指定价格序列
# 初始化交易指令、买卖价格和手续费
self.order = None
self.buy_price = None
self.buy_comm = None
# 添加移动均线指标
self.sma = bt.indicators.SimpleMovingAverage(
self.datas[0], period=self.params.maperiod
)
def next(self):
"""
执行逻辑
"""
if self.order: # 检查是否有指令等待执行,
return
# 检查是否持仓
if not self.position: # 没有持仓
if self.data_close[0] > self.sma[0]: # 执行买入条件判断:收盘价格上涨突破20日均线
self.order = self.buy(size=100) # 执行买入
else:
if self.data_close[0] < self.sma[0]: # 执行卖出条件判断:收盘价格跌破20日均线
self.order = self.sell(size=100) # 执行卖出
cerebro = bt.Cerebro() # 初始化回测系统
start_date = datetime(1991, 4, 3) # 回测开始时间
end_date = datetime(2020, 6, 16) # 回测结束时间
data = bt.feeds.PandasData(dataname=stock_hfq_df, fromdate=start_date, todate=end_date) # 加载数据
cerebro.adddata(data) # 将数据传入回测系统
cerebro.addstrategy(MyStrategy) # 将交易策略加载到回测系统中
start_cash = 1000000
cerebro.broker.setcash(start_cash) # 设置初始资本为 100000
cerebro.broker.setcommission(commission=0.002) # 设置交易手续费为 0.2%
cerebro.run() # 运行回测系统
port_value = cerebro.broker.getvalue() # 获取回测结束后的总资金
pnl = port_value - start_cash # 盈亏统计
print(f"初始资金: {start_cash}\n回测期间:{start_date.strftime('%Y%m%d')}:{end_date.strftime('%Y%m%d')}")
print(f"总资金: {round(port_value, 2)}")
print(f"净收益: {round(pnl, 2)}")
cerebro.plot(style='candlestick') # 画图